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We consider random walks on random graphs, focusing on return probabilities and hitting times for sparse
Erdös-Rényi graphs. Using the tree approach, which is expected to be exact in the large graph limit, we show
how to solve for the distribution of these quantities and we find that these distributions exhibit a form of
self-similarity.
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I. INTRODUCTION

Random walks are some of the simplest stochastic pro-
cesses �1,2� and yet they arise in many scientific fields such
as pure mathematics, statistical physics, or even biology
�3–6�. A fundamental quantity for computing properties of
random walks is the first passage time �7,8�. Consider a ran-
dom walk on a graph G, starting at node s; given another
arbitrary node t �the target�, the hitting time H�s , t� is just the
mean of the first passage time to go from s to t. There is a
well-known relation between the value of H�s , t� averaged
over all nodes t of the graph and the spectrum of its adja-
cency matrix, as derived in �9�.

In this work we focus on random graphs �9,10�. For dense
Erdös-Rényi graphs �11�, the spectrum of the diffusion op-
erator converges to that of a Gaussian random matrix and
one can show �12,13� that if N is the number of nodes of G,
the hitting time is N+o�N�. As far as we know, there is no
analogous result for sparse graphs: only a mean-field ap-
proximation has been derived �14�, which neglects certain
fluctuations. This situation is surprising because the problem
has been open for many years, but the lack of progress un-
derlies the difficulty of deriving analytically the spectrum of
the adjacency matrix on sparse random graphs �15,16�. Nev-
ertheless, we here bypass this difficulty by exploiting the
local structure of sparse random graphs that is treelike with a
probability of 1 at large N. If, as in a number of other prob-
lems �18,19�, only the graph’s local structure matters at large
N, then the problem maps in the N→� limit to diffusion
processes on random trees. This tree approach, which will be
validated in Sec. VII, then provides an analytical calculation
for the hitting times and for a closely related quantity, the
probability that the walker returns to its starting node in a
finite time.

In what follows, we first specify the stochastic dynamics
of the random walk and the kinds of random graphs we use.
After that we compute the hitting times and probabilities of
return on random d-regular graphs �17�. That calculation is
then generalized to sparse Erdös-Rényi graphs, displaying
quite subtle distributions.

II. MODEL

We consider a random walker on a graph G. At each time
step n, the walker hops to one of the neighboring nodes, with
all such nodes being equiprobable. It is convenient to intro-

duce the adjacency matrix A of G: Aij =1 if nodes i and j are
connected by an edge and Aij =0, otherwise. Defining at each
time step n the probability vi

�n� of having the walker be at
node i, the vector of probabilities obeys the master equation

vi
�n+1� = �

�ji�

1

dj
v j

�n� = �AD−1v�n��i, �1�

where the sum is taken over all nodes j that are adjacent to
the node i. The matrix D is diagonal; its ith diagonal element
Dii is equal to the degree di of the ith node.

To investigate the hitting time of the walker to go from
node s to t, it is enough to initialize the vector v�0� to be zero
on all nodes, except at s where it is 1, and to impose absorb-
ing conditions at the target node t, i.e., vt

�n�=0 at all n. Then
the probability of having a first passage time equal to n is
given by the flux into node t at that time step �7�. A modified
treatment of the walker allows one to also obtain the prob-
ability of return to the starting node.

Our mathematical solution concerns Erdös-Rényi graphs
in the ensemble G�N , p�, where N is the total number of
nodes and each pair of nodes has a probability p to be con-
nected by an edge. For sparse graphs, p=c /N, where c= �d�
is the mean degree of nodes. We shall also consider fixed
degree random graphs, also called random d-regular graphs,
where each node has the same degree d and connections are
otherwise random �17�.

III. HITTING TIMES ON RANDOM d-REGULAR GRAPHS

Let us first compute the hitting time on random regular
graphs, exploiting their local treelike nature. Clearly, loops
can arise in random d-regular graphs �17� but their typical
length is O(ln�N�). Thus, it is expected that most properties
can be obtained by studying what happens locally, as long as
boundary conditions at “infinity” are properly handled. Such
an approach has been used in many contexts with a high
level of success �18,19�.

For a given random regular graph, of fixed degree d, we
consider a node t and ask what is the mean of H�s , t� when
averaged over all possible departing nodes s. We need to
solve a diffusion problem where at time n=0 a walker is
equidistributed among the N−1 nodes s �s� t� and if the
walker hits node t it gets absorbed. If one denotes by Ft

�n� the
probability flux into node t at step n, then the hitting time
averaged over all s is given by the first moment of n distrib-
uted according to Ft

�n�.
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In the neighborhood of t, the graph is a Cayley tree with a
probability of 1 at large number of nodes N and thus does not
depend on the node which we choose as absorbing in the
large N limit. Given the diffusion-absorption process, the
vector of probabilities quickly converges to the dominant
eigenvector of the master equation �that with the largest ei-
genvalue decaying the slowest�. In the limit of large N, the
decay rate goes to zero and all the transient behavior �asso-
ciated with the other eigenvectors� becomes irrelevant. When
N→�, it is then enough to determine the dominant eigen-
vector, imposing zero boundary condition at the root node t
and 1 / �N−1� boundary conditions for the far away nodes.

As N→�, the recurrence equation that is satisfied by the
eigenvector’s elements leads to dAk+1=Ak+2+ �d−1�Ak,
where Ak is the sum of the probabilities on the nodes that are
at distance k from the root node. Solving this, subject to the
normalization and boundary conditions, leads to the value of
A1 and thus the flux flowing into the absorbing node using
the eigenvector: Ft=A1 /d.

Note that since at large N only the leading eigenvector
matters, the first passage time is exponentially distributed
with a mean given by the inverse of this flux. This then gives
for random d-regular graphs a hitting time behaving at large
N as

H

N
=

d − 1

d − 2
+ o�1� . �2�

Finally, it is worth noting that for random d-regular graphs,
with a probability of 1 in the large N limit, the ratio H�s , t� /N
does not depend on the starting node s. Also, because of the
regularity of the graph, this quantity does not depend on t
either.

IV. PROBABILITY OF RETURN ON RANDOM
d-REGULAR GRAPHS

On any finite graph, a walker leaving node t will return
with a probability of 1. Nevertheless, if one considers the
distribution of return times for increasing values of N, one
will find that there is a N→� limiting pointwise distribution
but which does not integrate to 1. Indeed, in that limit, the
return times will be finite with probability r̂ and will diverge
linearly in N with probability 1− r̂. If r̂�1, the walk is said
to be transient. On the infinite Cayley tree, r̂ can be com-
puted simply by using the homogeneity of the graph as fol-
lows.

Take t to be the root of an infinite Cayley tree. The walker
must make a first step; let it be to one of its neighbors j.
Define r as the probability for the walk to return to t given
that it has stepped to j. Using the equivalence of all nodes,
one can write a series for r,

r =
1

d
+

�d − 1�r
d

1

d
+

��d − 1�r�2

d2

1

d
+ ¯ , �3�

where d�2 is the degree of the Cayley tree. In this series,
the term of O�rp� corresponds to the probability that the walk
returns p times to node j before going back to the root t.
Summing this geometric series gives two possible values:

r=1 and r=1 / �d−1�. Furthermore, it is easy to see that
r̂=r. If d=2, we have a one-dimensional walker and r̂=1.
For d�3, the walk is transient and r̂=1 / �d−1�.

V. PROBABILITY OF RETURN ON ERDÖS-RÉNYI
GRAPHS

Here, we extend the previous calculation of return prob-
abilities to the case of Erdös-Rényi graphs. Just as for the
random d-regular graphs, we exploit the fact that with a
probability of 1 in the large N limit the neighborhood of a
node belonging to a sparse Erdös-Rényi graph is locally
treelike. We denote by c= �d� the mean degree of these
graphs; the probability to have a node of degree d is
P�d�=e−ccd /d!, i.e., it is given by the Poisson distribution.

To find the probability to return in a finite number of steps
�formally at infinite N� for a walker starting on the root node
t, we reconsider the series of Eq. �3�. Suppose that at the first
step the walker moves to the neighbor j of the root node, and
that dj is the connectivity of that node. If the walker is to
return to t, it can do so immediately, or it can perform p
loops from j �avoiding t�, stepping back to t only after its
�p+1�th visit to node j. By a loop from j, we mean a step to
one of the dj −1 neighbors of j other than t, then a finite
number of steps that do not visit j, and then finally a return to
j. The point is that in our system the walker cannot come
back to t other than through the edge connecting j to t: any
other route requires going to infinity and thus an infinite
number of steps. �Since we are dealing with the return prob-
ability on an infinite graph, the walks returning to t must
have a finite number of steps.�

For the edges connecting node j to a node other than t, let
the return probabilities be rj�1� ,rj�2� , . . . ,rj�dj −1�. Given
these rj’s, the probability r to return to the root node if the
walk’s first step is to node j is

r =
1

dj − �
m=1

dj−1

rj�m�

. �4�

However, the rj�m� are independent and identically distrib-
uted random variables belonging to a distribution ��r�. In the
Erdös-Rényi ensemble, t connects to a random node �j here�
which itself connects to other random nodes. The distribution
of r is thus the same as that of rj’s, and Eq. �4� determines
implicitly a self-consistent functional equation for ��r�. This
can be written formally as

��r� = P�0���1 − r� + �
z=1

�

P�z�� dr1 ¯� drz��r1� ¯ ��rz�

��	 1

1 + �
i=1

z

�1 − ri�

− r
 , �5�

where P�z� is the Poisson distribution �of z=dj −1� and ��x�
is the Dirac delta function. Note that since we are dealing
with an Erdös-Rényi graph, the probability that the node j
�which by construction is connected to the absorbing node t�
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has degree z+1 is given by P�z�. This is due to the fact that,
for Erdös-Rényi graphs, the edges are independent.

We have solved for � by numerical iteration, demanding a
stable distribution. Because � has both a continuous part for
0�r�1 and a delta function part at r=1, it was necessary to
treat these two parts separately, and the convergence in the
number of iterations is quite fast. To illustrate our results, we
display in Fig. 1 the probability density ��r� when the mean
degree is 3. �Numerically, we must introduce a coordination
cutoff and binning to compute ��r�; we find that taking a
cutoff value of a few times the graph’s mean coordination
leads to negligible errors, while beyond 2500 bins no visible
dependence on the bin size can be seen. For all the figures
presented here, we used 10 000 bins.� It also exhibits a form
of self-similarity: the motif for 0�r�0.5 is repeated at
larger values of r but each time with a smaller amplitude and
some distortion. Also, note that the distribution is relatively
smooth; its continuity can be justified as follows. Consider
the ensemble of graphs for which the return probability r is
in the interval �r ,r+dr�. If we increase slightly the degree of
a node far away from the absorbing node for all of these
graphs, the return probability r will decrease slightly. If this
modified node is sufficiently far, the change in r can be made
arbitrarily small. Because of this, the distribution of r can
have no discontinuities.

As a last point, the intensity 	 of the Dirac part of � gives
the probability for the first step of the walk to connect to a
finite part of the graph. It is thus simply given �10� by the
solution to the equation 	=�k=0

� P�k�	k, obtained by forcing
the node j to have all its neighbors in a finite part of the
graph also. In such a situation, one has r=1.

VI. HITTING TIMES ON ERDÖS-RÉNYI GRAPHS

To compute the hitting time H�s , t�, we take s and t to be
on the same connected component whose size we denote by
N�. For Erdös-Rényi graphs, we work beyond the percola-
tion threshold, c
1, on the “infinite” component, so

N���1−	�N. With a probability of 1, the hitting time
H�s , t� scales with N, has negligible fluctuations with s, and
depends only the neighborhood properties of t. We thus focus
on Ht, the mean of H�s , t� when averaging over all nodes s
distinct from t. This problem has been solved for dense
Erdös-Rényi graphs and leads to Ht=N+o�N� �13�. For the
sparse case, no exact treatment has been proposed, but a
mean-field-like approximation gives rather good results �14�.
We now provide an exact mathematical approach.

As explained previously, we can follow the probability of
finding the walker on any node. The initial condition is that
every node except t is occupied with the same probability
1 / �N�−1�. The absorption at node t imposes vt

�n�=0 at all
times. The master equation for this process is therefore

v�n+1� = �TAD−1v�n�� , �6�

where Tij =�ij�1−�ti�. Denote by S the leading eigenvector of
the diffusion operator AD−1 having no absorption, with an
eigenvalue of 1. For a normalization of the probabilities to 1,
one has Si=di / �N��d���, where di is the degree of node i on
the infinite component. Furthermore, �d�� is the mean degree
on the connected component considered, which in our case is
not c because we have the constraint of belonging to the
infinite component; instead it is

�d�� =

�
k=1

�

k�1 − 	k�P�k�

�
k=1

�

�1 − 	k�P�k�

. �7�

It is easy to check that under evolution without absorption S
is unchanged: since the walk is on a connected component,
this is the only normalized steady-state distribution. Now
introduce the vector b�n� that represents the difference be-
tween the vectors S and v�n�,

1

N�

bi
�n� =

1

N�

di

�d��

− vi
�n�. �8�

The absorption condition at t then imposes bt
�n�=dt / �d�� for

all n. Far away from the root node, the distribution quickly
relaxes to the leading eigenvector of the diffusion equation.
In the N�→� limit, almost all nodes are oblivious to the
absorption, so we can compute the hitting time by assuming
that vm

�n� is equal to Sm for all nodes m at infinity, which gives
us the boundary condition bm

�n�=0 at all times.
Now we can interpret the evolution equation for b�n� as

describing a process of multiple random walkers diffusing on
the graph, with in addition a fixed source at the root node.
Specifically, at each time step n, bt

�n� new walkers are created
at the root and step away, while any walkers incoming to the
root are removed from the system. With increasing number

of iterations, the vector b�n� converges to a steady state b̃ �as
v�n� converges to ṽ, a leading eigenvector of TAD−1� in
which for each edge �tj� connected to the root node, there is
an outgoing flux of 1 / �d�� and a corresponding incoming
flux of rj / �d��, where rj is the probability of return to t of a
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FIG. 1. �Color online� The probability density of the return

probability r after stepping from a given node to one of its neigh-
bors on an infinite Erdös-Rényi graph with a mean degree of 3. For
ease of presentation, the delta function contribution at r=1 has been
removed and the rest has been rescaled to have a total probability of
1. Note the qualitative self-similarity.
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walker given that it has stepped to j. The flux into b̃t is then
equal to the flux of “returning” random walkers,

�
�jt�

1

dj
b̃ j =

1

�d��
�
�jt�

rj . �9�

Coming back to the formalism based on ṽ, i.e., the leading
eigenvector of TAD−1, the net total flux Ft into the absorbing
node t is given by

Ft = �
�jt�

1

dj
ṽ j . �10�

Using Eqs. �8� and �9� one obtains the final expression

Ft =
1

N��d��
�
�jt�

�1 − rj� . �11�

In the previous section we derived the distribution of rj; from
that we easily obtain the distribution for Ht=1 /Ft as follows.
First, for each value of dt �the degree of the root node�, we
compute the distribution of Ft. The delta function part of this
distribution �at Ft=0� is removed and the remaining distribu-
tion is rescaled to have norm 1. This corresponds to enforc-
ing the constraint that the absorbing node is on the infinite
component of the Erdös-Rényi graph �the part of the distri-
bution of Ft which gives zero flux corresponds to being on a
finite component�. Second, the distribution of Ht=1 /Ft is
extracted: call it �dt

�Ht�. Finally, given all the distributions
�dt

�1�dt���, the distribution of hitting times H at random
nodes is obtained by averaging �dt

with their respective
weights,

��H� = �
dt=1

� �dt
�Ht�P�dt��1 − 	dt�

�
j=1

�

P�j��1 − 	 j�

. �12�

An example of such a distribution is shown in Fig. 2 when

�d�=4. Furthermore, the distribution of H also gives the dis-
tribution of first passage times since at large N, for each
value of H, the first passage time n is distributed as
exp�−n /H�. Finally, to obtain the mean hitting time �H�, it is
enough to compute the mean of the distribution of H. We
have done so and show in Fig. 3 the resulting values, nor-
malized by N�, as a function of the mean degree of the
graphs. At large �d�, the ratio converges to 1 with O�1 / �d��
corrections: one recovers the dense graph result. Also, the
behavior is very smooth and we find that it differs from the
value when the degree does not fluctuate �the case of random
d-regular graphs� also by O�1 / �d��.

VII. VALIDATION OF THE TREE APPROACH

One of the key assumptions in the derivation of our for-
mulas is that, since the graphs under consideration are lo-
cally treelike, quantities such as the return probability can be
computed by replacing the graphs by trees with the same
statistics for the node degrees. There are certain systems
where such an approach can be demonstrated to be exact in
the large graph limit �18�, but unfortunately in most cases
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FIG. 2. �Color online� The probability density of H /N� on

Erdös-Rényi graphs with a mean degree of 4, in the large graph size
limit. H is the hitting time of walks residing on the graph’s infinite
�percolating� component and absorbed at a random node t; N� is the
size of that connected component.
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FIG. 3. �Color online� Mean hitting times divided by N� for
Erdös-Rényi graphs in the limit of large graphs, as a function of
mean node degree c= �d�. N� is the size of the infinite component,
N���1−	�N, for graphs of N nodes.
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FIG. 4. �Color online� Plot comparing numerical simulation
with analytical results. The x axis shows the size of the largest
connected component of the graph; the y axis shows the mean hit-
ting time for such a component.
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one has no such a proof. To see whether the tree approach
might be exact �for large graphs� for the mean hitting times,
we have computed by simulation the actual values for ran-
dom graphs without resorting to any approximation. These
values can then be compared to the theoretical predictions, in
particular in the large graph size limit.

Figure 4 shows the mean hitting times on the largest con-
nected component of an Erdös-Rényi graph with mean de-
gree �d�=4. The estimation from Eq. �12� �based on the tree
approach� is compared with values obtained from a numeri-
cal simulation in which we followed the probability vector
v�n� as in Eq. �6�. For each randomly generated graph of size
N, we numerically calculated the mean hitting time for a
randomly chosen absorbing node t on its largest connected
component �whose size is N��. The mean hitting times were
then averaged over multiple graphs. The error bars are shown
as well. We found that the values �H� /N� determined from
the simulations tend toward their large N limit rather fast and
that this limit is compatible with our analytical result, with
the relative difference being compatible with a O�1 /N� con-
vergence. The same conclusion also holds in the context of
random d-regular graphs �cf. Eq. �2��. In sum, the agreement
of the theoretically predicted values with the results from
numerical simulations gives some credence to the claim that
the tree approach is exact in the large N limit.

VIII. DISCUSSION AND CONCLUSION

We considered random walks on random graphs, focusing
on two quantities: the distribution of hitting times and the
probability that a walker will return to its starting point in a
finite time. �The hitting time is the mean of first passage
times.� By using the local tree approach �18,19�, we were
able to calculate analytically the large N behavior of these
quantities on two families of random graphs. We found non-
trivial distributions having self-similar features associated
with the discrete nature of possible neighborhoods of a node.
Finally, we compared the calculated results with numerical
simulations and found excellent agreement, justifying the
tree approach which assumes that the loops in these graphs
can be treated by appropriate boundary conditions on infinite
trees.
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